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ABSTRACT 

In this paper, we performed a comparison study between 

GoogLeNet, AlexNet, and InceptionV3 deep learning models to 

recognize and classify colorectal cancer tumors. Colorectal tumors 

are one of the very common cancer types and early detection 

could result in a significantly higher survival rate of 95% as 

opposed to 12%. In this work, we aim to investigate the deep 

learning models to automatically detect the tumor types from 

polyp images.  We, therefore, used actual images taken from the 

colorectal surgery or colonoscopy using Narrow-band imaging 

(NBI). The images are classified based on NBI International 

Colorectal Endoscopic (NICE) classification. We used NICE 1 

and NICE 2 types with a total of 2604 images in the size of 

64x64. Our results show that the InceptionV3 model has the most 

accurate results by average 92.39% where AlexNet is 88.19% and 

GoogLeNet is 85.73%.   
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1. INTRODUCTION 
 
Colorectal cancer is the second most encountered cancer type in 

women and the third most commonly occurring cancer type in 

men, with an average of 1.4 million new cases per year [1]. The 

estimated new colorectal cancer cases in 2019 are 145,600 and the 

estimated colorectal cancer-related deaths in 2018 were 51,020 

[2]. Colorectal cancer will be a major health challenge in the U.S 

and the rest of the world if diagnosis and screening techniques are 

not improved. Timely diagnosis in colorectal allows the detection 

of malignant lesions that are yet to go beyond the submucosal 

layer [3].  

 

NBI is a commonly used imaging technique in colonoscopy to 

diagnose cancerous legions [4]. NBI filters white light that is 

received by hemoglobin, a protein molecule in red blood cells that 

carries oxygen, so that it can be observed by a colonoscopy. 

While red light with a long wavelength is not absorbed, there are 

strong peaks at approximately 415 and 540 nm. To show details 

such as vessels, surface patterns, etc. in the mucosal layer, blue 

and green light should be used at 415 and 540 nm respectively.  

 

NICE classification is based on three parameters; colors, vessels, 

and surface patterns[5]. According to NICE classification, there 

are 3 types: Type 1, Type 2 and Type 3. In Type 1 (Figure 1), the 

color of the lesion is the same or lighter than the background. In 

Type-1 there are not any vessels or if there are, they may be 

isolated lacy vessels. Also, the surface pattern has dark or white 

spots of uniform size, or there is a homogeneous absence of 

pattern. In Type 2 (Figure 2), the color is brown, relative to the 

background. Brown vessels are surrounding white structures, the 

surface pattern is oval, tubular or branched white structures 

surrounded by brown vessels. In Type 3, the color is brown to 

dark brown relative to the background, and sometimes there may 
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be patchy whiter areas. These kinds of lesions have disrupted or 

missing vessels. There is also an amorphous surface pattern. The 

long-term goal of this study is to design and develop a viable 

platform to automatically detect and classify polyps. Therefore, 

we performed a feasibility study to show the success rates of deep 

learning-based classification techniques to classify the colorectal 

tumor images according to Narrow-band imaging International 

Colorectal Endoscopic (NICE) classification [5] by using deep 

learning with convolutional neural networks (CNN) [6]. 
 

2. RELATED WORKS 
Classifying a tumor is a crucial step of the colonoscopy. It 

helps to understand the characteristics of a tumor such as benign 

or malignant, widely spread or not, etc. For correct classification, 

different deep learning algorithms were developed in the previous 

years. Deep learning has become widespread in the last decade in 

the areas of image recognition and data science. 

There are several methods developed for endoscopic image 

recognition such as Fisher-vector [7]–[9], Bag of Visual Words 

(BoVW) [10], Speeded Up Robust Features (SURF) [11], Scale-

invariant feature transform (SIFT) [12] and Vector of Linearly 

Aggregated Descriptors (VLAD) [13], [14]. Nowadays, most of 

medical centers and hospitals are using the NBI systems in 

endoscopic examinations. However, it is difficult to classify 

tumors for medical students and novice surgeons in practice. 

Therefore, the development of computer-aided classification 

systems is increasing. Sonoyama et al. [15], tried to decrease 

computation cost without changing accuracy by using Fisher 

vector and VLAD. Fisher vector is a vectoral representation 

gathered by pooling image features with the use of Gaussian-

Mixture-Model (GMM) [9], while VLAD uses k-mean to generate 

the features. Unlike VLAD, a Fisher vector stores feature-based 

second-order information which benefits classification 

performance [16]. On the other hand, Tamaki et al. [17], followed 

the BoVW approach with sampled SIFT features [18]and support 

vector machine (SVM) classifiers to classify 908 NBI images and 

had 94% to 96% accuracy. A staged filtering approach identifies 

scale-invariant features. The first stage identifies key locations in 

scale space by looking for locations of a difference-of-Gaussian 

function. A feature vector which explains the local image region 

sampled relative to its scale-space coordinate frame is generated 

by using each point. These vectors are called SIFT keys.  

Deep learning is one of the neural network models which includes 

CNN models where layers are convolutions of their previous 

layers. The usage of CNN’s is quickly increasing, and CNN’s are 

replacing existing methods in the image recognition era due to its 

transcending performance. Fine-tuning from a pre-trained network 

is enough to get a high accuracy rate when there is a smaller 

dataset; however, to fully train a CNN, a large dataset is necessary 

[19]. Furthermore, features from CNN layers without any fine-

tuning can be used for medical image recognition [20]. 

 

 

Figure 1. NICE 1 non-NBI and NBI tumor 

 

 

Figure 2. NICE 2 non-NBI and NBI tumor 

3. METHODS 
A CNN is a special class of neural networks that uses 

convolutional layers that convolve using the dot product of the 

pixels in an image. They take a weighted sum of a previously 

defined number of pixels called a filter in a certain region. In the 

initial layers of a CNN the network will learn based off 

parameters like edges, bright and dark spots etc. After multiple 

layers of filters, the CNN will begin recognizing full objects. In 

our case the CNN will begin to recognize and classify polyps.  

 

CNN’s are made up of convolutional layers which are layers that 

contain the previously mentioned filters. Pooling layers are used 

to concatenate and combine outputs from neurons which allows 

for larger portions of an image to be recognized. The last few 

layers in a CNN are called fully connected layers. These fully 

connected layers connect all the results in order to form a full 

classification of an image. These filters are further defined by 

activation functions. An activation function defines an output 
given an input or multiple input.  

There is a great amount of image classification models that have 

millions of parameters such as GoogLeNet [21], AlexNet [22], 

InceptionV3 [23], etc. It will cost a lot of money and time to train 

them from scratch. Instead of doing this, we have used transfer 

learning which makes it easier by using a part of a model that has 

already been trained(pre-trained) on a new model. In this study, 

we used GoogLeNet, AlexNet, and InceptionV3, which are neural 

network architectures for image classification trained in the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

[22], [24]. The ImageNet dataset has 1000 different classes, 

1,281,167 high-resolution images for training, 50,000 images for 

evaluation and 100,000 images for testing.  

CNN architectures usually have a standard structure that consists 

of a convolutional layer followed by pooling and fully connected 

layers. AlexNet was firstly seen in the ImageNet LSVRC-2010. It 

was the first large scale CNN to perform well. The network has 60 
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million parameters and 650,000 neurons. The structure has eight 

layers which includes five convolutional layers, max-pooling 

layers, and three fully connected layers. In the ImageNet LSVRC-

2012, they won the competition with 15.3% of the top-5 test error 

rate. On the other hand, GoogLeNet uses 12 times fewer 

parameters than the AlexNet, while it is significantly more 

accurate. It has 22 layers with parameters (27 layers if pooling 

layers are also counted). The total number of layers for the 

construction of the network is about 100. The exact number 

depends on the machine learning infrastructure which is used. The 

top-5 test error rate of GoogLeNet in ILSVRC 2014 was 7.89%. 

In the other model, InceptionV3 has 42 layers. Even when it is 

using less than 25 million parameters which is 5 times greater 

than GoogLeNet, the computation cost is only 2.5 higher than 

GoogleNet. The top-5 test error rate of InceptionV3 is 4.2% which 

is the lowest error rate regarding AlexNet and GoogLeNet. 

According to these results, we expect to get the most accurate 

results by using InceptionV3.  

In this study, we used MATLAB 2018a, and one NVIDIA 

GTX960M graphic card v417.22. We have 2 classes: NICE 1 and 

NICE 2, and a total of 2604 images with a size of 64x64. We 

originally had 171 high-resolution images with a size of 

1920x1080. To get more accurate results, we performed a 

preprocessing by removing reflections and cropping images to 

64x64 samples manually (Figures 3 and 4). 90% of these images 

were used as the training set and 10% of them were used as the 

validation set. 

 

Figure 3. Cropping a NICE 1, 1920x1080 image to 64x64 

samples. 

 

Figure 4. Cropping a NICE 2, 1920x1080 image to 64x64 

samples. 

4. RESULTS 
We explain results with three different CNN models: AlexNet, 

GoogLeNet, and InceptionV3. 

4.1 AlexNET 
The first layer of the AlexNet, “data”, requires 227x227x3 

images. Therefore, we resized the 64x64 images to 227x227 

(Figure 5). The next convolution layer applies 96 of 11x11x3 

filter. After activation function and normalization layers, there is 

another layer which is a pooling layer that applies maximum pool 

by 3x3 filter. It repeats over and over, then reaches to the fully 

connected layers. Next two fully connected layers with 4096 

nodes each. At the end, it has one fully connected layer with 1000 

nodes, one SoftMax layer, and one output layer. The pretrained 

AlexNet model that we used has 25 layers. First, we extracted all 

layers, except the last three layers because the last three layers of 

the pre-trained network are configured for 1000 classes. However, 

we have only 2 classes for our comparison study, NICE 1 and 

NICE 2. Therefore, we kept the features from the early layers of 

the pre-trained network and retrained the last three layers. The 

average test result (Figure 6) of the 9 random executions is 

88.19% (Min: 85.87%, Max: 91.82%). 

 

 

Figure 5. Sample validation images with their predicted labels 

and correct labels in parenthesis. 

 

Figure 6. Test accuracies of AlexNet. 

4.2 GoogLeNET 
This architecture consists of 22 layers in deep. It reduces the 

number of parameters from 60 million (AlexNet) to 5 million. The 

pre-trained GoogLeNet model that we used has 144 layers. The 

first layer is the input layer which takes 224x224x3 images. 

Therefore, we resized the size of 64x64 images from the dataset to 

a size of 224x224. To retrain GoogLeNet, we replaced the last 

three layers which include information about the class labels and 

probabilities. After that, we extracted the connections and layers 

then set the learning rates to zero in the first 110 layers to prevent 

overfitting and speed up the network training. The average test 

result (Figure 7) of the 9 random executions is 85.73% (Min: 

83.46%, Max: 88.46%). 
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Figure 7. Test accuracies of GoogLeNet. 

4.3 InceptionV3 
The pre-trained InceptionV3 model that we used has 316 layers. 

Other than the other networks, the InceptionV3 model needs a 

size of 299x299 images. Therefore, we resized the size of 64x64 

images to a size of 299x299 images. After that, the first 

convolution layer applies a 149x149x32 filter. Then, the 

normalization and activation layers are applied. In the first max-

pooling layer the size of the filter is 73x73x64. To train the 

network for our classes, NICE 1 and NICE 2, we replaced the last 

three layers of the network. We also set the learning rates to zero 

in the first 110 layers the same as in the GoogLeNet. The average 

test result (Figure 8) of the 9 random executions is 92.39% (Min: 

89.62%, Max: 95.77%). 

 

Figure 8. Test accuracies of InceptionV3. 

5. CONCLUSIONS 
We had 2 classes: NICE 1 and NICE 2, and a total of 171 high-

quality colorectal tumor images. We performed a comparison 

study about the classification of the colorectal tumor images 

according to NICE classification by using deep learning models 

between GoogLeNet, AlexNet, and InceptionV3. Our results show 

that InceptionV3 has better accuracy with an average of 92.39%. 

We also achieved the most accurate result, 95.77%, with 

InceptionV3 model. We performed preprocessing by removing 

reflections and cropping images to 64x64x3 samples manually to 

improve accuracy. We were expecting that GoogLeNet was going 

the give better results than AlexNet according to their top-5 test 

error rates. However, in our transfer learning model infrastructure, 

AlexNet has an average 88.19% where GoogLeNet is 85.73%. 

This comparison study aims to show the accuracies of the deep 

learning models to classify the colorectal tumor images according 

to NICE classification. According to our study, these techniques 

will help surgeons to classify tumors and give promising results in 

the future. We would like to automate the preprocessing stage and 

improve this study to perform on real-time videos of the 

colonoscopy procedures for future work. 
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