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ABSTRACT

In this paper, we performed a comparison study between
GoogLeNet, AlexNet, and InceptionVV3 deep learning models to
recognize and classify colorectal cancer tumors. Colorectal tumors
are one of the very common cancer types and early detection
could result in a significantly higher survival rate of 95% as
opposed to 12%. In this work, we aim to investigate the deep
learning models to automatically detect the tumor types from
polyp images. We, therefore, used actual images taken from the
colorectal surgery or colonoscopy using Narrow-band imaging
(NBI). The images are classified based on NBI International
Colorectal Endoscopic (NICE) classification. We used NICE 1
and NICE 2 types with a total of 2604 images in the size of
64x64. Our results show that the InceptionVV3 model has the most
accurate results by average 92.39% where AlexNet is 88.19% and
GoogLeNet is 85.73%.
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1. INTRODUCTION

Colorectal cancer is the second most encountered cancer type in
women and the third most commonly occurring cancer type in
men, with an average of 1.4 million new cases per year [1]. The
estimated new colorectal cancer cases in 2019 are 145,600 and the
estimated colorectal cancer-related deaths in 2018 were 51,020
[2]. Colorectal cancer will be a major health challenge in the U.S
and the rest of the world if diagnosis and screening techniques are
not improved. Timely diagnosis in colorectal allows the detection
of malignant lesions that are yet to go beyond the submucosal
layer [3].

NBI is a commonly used imaging technique in colonoscopy to
diagnose cancerous legions [4]. NBI filters white light that is
received by hemoglobin, a protein molecule in red blood cells that
carries oxygen, so that it can be observed by a colonoscopy.
While red light with a long wavelength is not absorbed, there are
strong peaks at approximately 415 and 540 nm. To show details
such as vessels, surface patterns, etc. in the mucosal layer, blue
and green light should be used at 415 and 540 nm respectively.

NICE classification is based on three parameters; colors, vessels,
and surface patterns[5]. According to NICE classification, there
are 3 types: Type 1, Type 2 and Type 3. In Type 1 (Figure 1), the
color of the lesion is the same or lighter than the background. In
Type-1 there are not any vessels or if there are, they may be
isolated lacy vessels. Also, the surface pattern has dark or white
spots of uniform size, or there is a homogeneous absence of
pattern. In Type 2 (Figure 2), the color is brown, relative to the
background. Brown vessels are surrounding white structures, the
surface pattern is oval, tubular or branched white structures
surrounded by brown vessels. In Type 3, the color is brown to
dark brown relative to the background, and sometimes there may



be patchy whiter areas. These kinds of lesions have disrupted or
missing vessels. There is also an amorphous surface pattern. The
long-term goal of this study is to design and develop a viable
platform to automatically detect and classify polyps. Therefore,
we performed a feasibility study to show the success rates of deep
learning-based classification techniques to classify the colorectal
tumor images according to Narrow-band imaging International
Colorectal Endoscopic (NICE) classification [5] by using deep
learning with convolutional neural networks (CNN) [6].

2. RELATED WORKS

Classifying a tumor is a crucial step of the colonoscopy. It
helps to understand the characteristics of a tumor such as benign
or malignant, widely spread or not, etc. For correct classification,
different deep learning algorithms were developed in the previous
years. Deep learning has become widespread in the last decade in
the areas of image recognition and data science.

There are several methods developed for endoscopic image
recognition such as Fisher-vector [7]-[9], Bag of Visual Words
(BoVW) [10], Speeded Up Robust Features (SURF) [11], Scale-
invariant feature transform (SIFT) [12] and Vector of Linearly
Aggregated Descriptors (VLAD) [13], [14]. Nowadays, most of
medical centers and hospitals are using the NBI systems in
endoscopic examinations. However, it is difficult to classify
tumors for medical students and novice surgeons in practice.
Therefore, the development of computer-aided classification
systems is increasing. Sonoyama et al. [15], tried to decrease
computation cost without changing accuracy by using Fisher
vector and VLAD. Fisher vector is a vectoral representation
gathered by pooling image features with the use of Gaussian-
Mixture-Model (GMM) [9], while VLAD uses k-mean to generate
the features. Unlike VLAD, a Fisher vector stores feature-based
second-order  information  which  benefits  classification
performance [16]. On the other hand, Tamaki et al. [17], followed
the BoVW approach with sampled SIFT features [18]and support
vector machine (SVM) classifiers to classify 908 NBI images and
had 94% to 96% accuracy. A staged filtering approach identifies
scale-invariant features. The first stage identifies key locations in
scale space by looking for locations of a difference-of-Gaussian
function. A feature vector which explains the local image region
sampled relative to its scale-space coordinate frame is generated
by using each point. These vectors are called SIFT keys.

Deep learning is one of the neural network models which includes
CNN models where layers are convolutions of their previous
layers. The usage of CNN’s is quickly increasing, and CNN’s are
replacing existing methods in the image recognition era due to its
transcending performance. Fine-tuning from a pre-trained network
is enough to get a high accuracy rate when there is a smaller
dataset; however, to fully train a CNN, a large dataset is necessary
[19]. Furthermore, features from CNN layers without any fine-
tuning can be used for medical image recognition [20].
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Figure 2. NICE 2 non-NBI and NBI tumor

3. METHODS

A CNN is a special class of neural networks that uses
convolutional layers that convolve using the dot product of the
pixels in an image. They take a weighted sum of a previously
defined number of pixels called a filter in a certain region. In the
initial layers of a CNN the network will learn based off
parameters like edges, bright and dark spots etc. After multiple
layers of filters, the CNN will begin recognizing full objects. In
our case the CNN will begin to recognize and classify polyps.

CNN’s are made up of convolutional layers which are layers that
contain the previously mentioned filters. Pooling layers are used
to concatenate and combine outputs from neurons which allows
for larger portions of an image to be recognized. The last few
layers in a CNN are called fully connected layers. These fully
connected layers connect all the results in order to form a full
classification of an image. These filters are further defined by
activation functions. An activation function defines an output
given an input or multiple input.

There is a great amount of image classification models that have
millions of parameters such as GoogLeNet [21], AlexNet [22],
InceptionV3 [23], etc. It will cost a lot of money and time to train
them from scratch. Instead of doing this, we have used transfer
learning which makes it easier by using a part of a model that has
already been trained(pre-trained) on a new model. In this study,
we used GooglLeNet, AlexNet, and InceptionV3, which are neural
network architectures for image classification trained in the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
[22], [24]. The ImageNet dataset has 1000 different classes,
1,281,167 high-resolution images for training, 50,000 images for
evaluation and 100,000 images for testing.

CNN architectures usually have a standard structure that consists
of a convolutional layer followed by pooling and fully connected
layers. AlexNet was firstly seen in the ImageNet LSVRC-2010. It
was the first large scale CNN to perform well. The network has 60



million parameters and 650,000 neurons. The structure has eight
layers which includes five convolutional layers, max-pooling
layers, and three fully connected layers. In the ImageNet LSVRC-
2012, they won the competition with 15.3% of the top-5 test error
rate. On the other hand, GoogLeNet uses 12 times fewer
parameters than the AlexNet, while it is significantly more
accurate. It has 22 layers with parameters (27 layers if pooling
layers are also counted). The total number of layers for the
construction of the network is about 100. The exact number
depends on the machine learning infrastructure which is used. The
top-5 test error rate of GoogLeNet in ILSVRC 2014 was 7.89%.
In the other model, InceptionV3 has 42 layers. Even when it is
using less than 25 million parameters which is 5 times greater
than GoogLeNet, the computation cost is only 2.5 higher than
GoogleNet. The top-5 test error rate of InceptionV3 is 4.2% which
is the lowest error rate regarding AlexNet and GooglLeNet.
According to these results, we expect to get the most accurate
results by using InceptionV3.

In this study, we used MATLAB 2018a, and one NVIDIA
GTX960M graphic card v417.22. We have 2 classes: NICE 1 and
NICE 2, and a total of 2604 images with a size of 64x64. We
originally had 171 high-resolution images with a size of
1920x1080. To get more accurate results, we performed a
preprocessing by removing reflections and cropping images to
64x64 samples manually (Figures 3 and 4). 90% of these images
were used as the training set and 10% of them were used as the
validation set.

Figure 3. Cropping a NICE 1, 1920x1080 image to 64x64
samples.
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Figure 4. Cropping a NICE 2, 1920x1080 image to 64x64
samples.

4. RESULTS

We explain results with three different CNN models: AlexNet,
GoogLeNet, and InceptionV3.

4.1 AlexNET

The first layer of the AlexNet, “data”, requires 227x227x3
images. Therefore, we resized the 64x64 images to 227x227
(Figure 5). The next convolution layer applies 96 of 11x11x3
filter. After activation function and normalization layers, there is
another layer which is a pooling layer that applies maximum pool
by 3x3 filter. It repeats over and over, then reaches to the fully
connected layers. Next two fully connected layers with 4096
nodes each. At the end, it has one fully connected layer with 1000
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nodes, one SoftMax layer, and one output layer. The pretrained
AlexNet model that we used has 25 layers. First, we extracted all
layers, except the last three layers because the last three layers of
the pre-trained network are configured for 1000 classes. However,
we have only 2 classes for our comparison study, NICE 1 and
NICE 2. Therefore, we kept the features from the early layers of
the pre-trained network and retrained the last three layers. The
average test result (Figure 6) of the 9 random executions is
88.19% (Min: 85.87%, Max: 91.82%).

NICE2 (NICE2)

NICE2 (NICE 2)

NICE1 (NICE1) NICE1 (NICE1)

F 3

Figure 5. Sample validation images with their predicted labels
and correct labels in parenthesis.
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Figure 6. Test accuracies of AlexNet.

4.2 GooglLeNET

This architecture consists of 22 layers in deep. It reduces the
number of parameters from 60 million (AlexNet) to 5 million. The
pre-trained GoogLeNet model that we used has 144 layers. The
first layer is the input layer which takes 224x224x3 images.
Therefore, we resized the size of 64x64 images from the dataset to
a size of 224x224. To retrain GoogLeNet, we replaced the last
three layers which include information about the class labels and
probabilities. After that, we extracted the connections and layers
then set the learning rates to zero in the first 110 layers to prevent
overfitting and speed up the network training. The average test
result (Figure 7) of the 9 random executions is 85.73% (Min:
83.46%, Max: 88.46%).
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Figure 7. Test accuracies of GoogLeNet.

4.3 InceptionV3

The pre-trained InceptionVV3 model that we used has 316 layers.
Other than the other networks, the InceptionV3 model needs a
size of 299x299 images. Therefore, we resized the size of 64x64
images to a size of 299x299 images. After that, the first
convolution layer applies a 149x149x32 filter. Then, the
normalization and activation layers are applied. In the first max-
pooling layer the size of the filter is 73x73x64. To train the
network for our classes, NICE 1 and NICE 2, we replaced the last
three layers of the network. We also set the learning rates to zero
in the first 110 layers the same as in the GoogLeNet. The average
test result (Figure 8) of the 9 random executions is 92.39% (Min:
89.62%, Max: 95.77%).

InceptionV3
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Figure 8. Test accuracies of InceptionV3.

5. CONCLUSIONS

We had 2 classes: NICE 1 and NICE 2, and a total of 171 high-
quality colorectal tumor images. We performed a comparison
study about the classification of the colorectal tumor images
according to NICE classification by using deep learning models
between GoogLeNet, AlexNet, and InceptionV3. Our results show
that InceptionVV3 has better accuracy with an average of 92.39%.
We also achieved the most accurate result, 95.77%, with
InceptionV3 model. We performed preprocessing by removing
reflections and cropping images to 64x64x3 samples manually to
improve accuracy. We were expecting that GoogLeNet was going
the give better results than AlexNet according to their top-5 test
error rates. However, in our transfer learning model infrastructure,
AlexNet has an average 88.19% where GoogLeNet is 85.73%.
This comparison study aims to show the accuracies of the deep
learning models to classify the colorectal tumor images according
to NICE classification. According to our study, these techniques
will help surgeons to classify tumors and give promising results in
the future. We would like to automate the preprocessing stage and
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improve this study to perform on real-time videos of the
colonoscopy procedures for future work.
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